		Smart Sk				
		2009 Scier				
Core Curriculum Content Standards						
New Jersey Science	е					
Grades 5-6	0.1	0, 1				
Activity/Lesson	State	Standards	A 11 0 10 11 11 11 11			
			An object's position can be described by			
			locating the object relative to other objects or a			
			background. The description of an object's			
		001.5	motion from one observer's view may be			
[]	N. I.	SCI.5-	different from that reported from a different			
Fly by Math	NJ	6.5.2.6.E.a	observer's view.			
Cl., b., Made	NI I	SCI.5-	Describe the force between two magnets as the			
Fly by Math	NJ	6.5.2.6.E.2	distance between them is changed.			
5 1 1 N 4 - 41.	N. I.	SCI.5-	Friction is a force that acts to slow or stop the			
Fly by Math	NJ	6.5.2.6.E.c	motion of objects.			
		001.5	Predict what would happen to an orbiting object			
The beautiful	N. I.	SCI.5-	if gravity were increased, decreased, or taken			
Fly by Math	NJ	6.5.4.6.A.3	away.			
			An object's position can be described by			
			locating the object relative to other objects or a			
			background. The description of an object's			
		COL E	motion from one observer's view may be			
Lina I la with Math	NI I	SCI.5-	different from that reported from a different			
Line Up with Math	NJ	6.5.2.6.E.a	observer's view.			
Lina Lla with Math	NJ	SCI.5-	Friction is a force that acts to slow or stop the			
Line Up with Math	INJ	6.5.2.6.E.c	motion of objects.			
		Smart Ski	ies			
		2009 Scier	nce			
		Core Curriculum Con	tent Standards			
New Jersey Science	е					
Grades 7-8						
Activity/Lesson	State	Standards				
			Design investigations and use scientific			
			instrumentation to collect, analyze, and evaluate			
		SCI.7-	evidence as part of building and revising models			
Fly by Math	NJ	8.5.1.8.B.1	and explanations.			
		SCI.7-	Mathematics and technology are used to gather,			
Fly by Math	NJ	8.5.1.8.B.b	analyze, and communicate results.			
			Gather, evaluate, and represent evidence using			
		SCI.7-	scientific tools, technologies, and computational			
Fly by Math	NJ	8.5.1.8.B.2	strategies.			
			When energy is transferred from one system to			
			another, the quantity of energy before transfer			
			equals the quantity of energy after transfer. As			
			an object falls, its potential energy decreases as			
			its speed, and consequently its kinetic energy,			
			increases. While an object is falling, some of the			
		001-	object's kinetic energy is transferred to the			
EL L. NA C		SCI.7-	medium through which it falls, setting the			
Fly by Math	NJ	8.5.2.8.D.a	medium into motion and heating it.			

		SCI.7-	Relate the kinetic and potential energies of a				
Fly by Math	NJ	8.5.2.8.D.1	roller coaster at various points on its path.				
			An object is in motion when its position is				
			changing. The speed of an object is defined by				
		SCI.7-	how far it travels divided by the amount of time it				
Fly by Math	NJ	8.5.2.8.E.a	took to travel that far.				
		SCI.7-	Calculate the speed of an object when given				
Fly by Math	NJ	8.5.2.8.E.1	distance and time.				
			Forces have magnitude and direction. Forces				
			can be added. The net force on an object is the				
			sum of all the forces acting on the object. An				
			object at rest will remain at rest unless acted on				
			by an unbalanced force. An object in motion at				
			constant velocity will continue at the same				
		SCI.7-	velocity unless acted on by an unbalanced				
Fly by Math	NJ	8.5.2.8.E.b	force.				
			Compare the motion of an object acted on by				
			balanced forces with the motion of an object				
		SCI.7-	acted on by unbalanced forces in a given				
Fly by Math	NJ	8.5.2.8.E.2	specific scenario.				
		201 =	Analyze data regarding the motion of comets,				
		SCI.7-	planets, and moons to find general patterns of				
Fly by Math	NJ	8.5.4.8.A.4	orbital motion.				
			When energy is transferred from one system to				
			another, the quantity of energy before transfer				
			equals the quantity of energy after transfer. As				
			an object falls, its potential energy decreases as				
			its speed, and consequently its kinetic energy,				
			increases. While an object is falling, some of the object's kinetic energy is transferred to the				
		SCI.7-	medium through which it falls, setting the				
Line Up with Math	NJ	8.5.2.8.D.a	medium into motion and heating it.				
Line up with Math	INJ	SCI.7-	Relate the kinetic and potential energies of a				
Line Up with Math	NJ	8.5.2.8.D.1	roller coaster at various points on its path.				
Line op with Math	INU	0.3.2.0.D.1	An object is in motion when its position is				
			changing. The speed of an object is defined by				
		SCI.7-	how far it travels divided by the amount of time it				
Line Up with Math	NJ	8.5.2.8.E.a	took to travel that far.				
Line op with matri	110	SCI.7-	Calculate the speed of an object when given				
Line Up with Math	NJ	8.5.2.8.E.1	distance and time.				
		0.0.2.0.2	Compare the motion of an object acted on by				
			balanced forces with the motion of an object				
		SCI.7-	acted on by unbalanced forces in a given				
Line Up with Math	NJ	8.5.2.8.E.2	specific scenario.				
•			Predict how the gravitational force between two				
			bodies would differ for bodies of different				
		SCI.7-	masses or bodies that are different distances				
Line Up with Math	NJ	8.5.4.8.A.3	apart.				
Smart Skies							
		2009 Scie					
Core Curriculum Content Standards							
New Jersey Science							

Grades 9-12			
Activity/Lesson	State	Standards	
<u> </u>			Use scientific principles and theories to build
		SCI.9-	and refine standards for data collection, posing
Fly by Math	NJ	12.5.1.12.A.3	controls, and presenting evidence.
, , , , , , , , , , , , , , , , , , ,			Design investigations, collect evidence, analyze
			data, and evaluate evidence to determine
			measures of central tendencies,
		SCI.9-	causal/correlational relationships, and
Fly by Math	NJ	12.5.1.12.B.1	anomalous data.
T Ty by Watti	1.10	SCI.9-	Mathematical tools and technology are used to
Fly by Math	NJ	12.5.1.12.B.b	gather, analyze, and communicate results.
T I y by Watti	110	12.0.1.12.5.6	Scientific reasoning is used to evaluate and
		SCI.9-	interpret data patterns and scientific
Fly by Math	NJ	12.5.1.12.B.d	conclusions.
1 ly by Matri	140	12.5.1.12.5.0	The potential energy of an object on Earth's
			surface is increased when the object's position
		SCI.9-	is changed from one closer to Earth's surface to
Fly by Math	NJ	12.5.2.12.D.a	one farther from Earth's surface.
riy by ivialii	INJ	SCI.9-	Model the relationship between the height of an
Fly by Math	NJ	12.5.2.12.D.1	
riy by ivialii	INJ	12.3.2.12.0.1	object and its potential energy.
			The motion of an object can be described by its
		0010	position and velocity as functions of time and by
Floring NA - 41-	N. I.	SCI.9-	its average speed and average acceleration
Fly by Math	NJ	12.5.2.12.E.a	during intervals of time.
			Compare the calculated and measured speed,
		0010	average speed, and acceleration of an object in
-		SCI.9-	motion, and account for differences that may
Fly by Math	NJ	12.5.2.12.E.1	exist between calculated and measured values.
		SCI.9-	Objects undergo different kinds of motion
Fly by Math	NJ	12.5.2.12.E.b	(translational, rotational, and vibrational).
		SCI.9-	The motion of an object changes only when a
Fly by Math	NJ	12.5.2.12.E.c	net force is applied.
			The magnitude of acceleration of an object
			depends directly on the strength of the net force
			and inversely on the mass of the object. This
		SCI.9-	relationship (a=Fnet/m) is independent of the
Fly by Math	NJ	12.5.2.12.E.d	nature of the force.
			Measure and describe the relationship between
		SCI.9-	the force acting on an object and the resulting
Fly by Math	NJ	12.5.2.12.E.4	acceleration.
			Analyze simulated and/or real data to estimate
		SCI.9-	the number of stars in our galaxy and the
Fly by Math	NJ	12.5.4.12.A.4	number of galaxies in our universe.
			The potential energy of an object on Earth's
			surface is increased when the object's position
		SCI.9-	is changed from one closer to Earth's surface to
Line Up with Math	NJ	12.5.2.12.D.a	one farther from Earth's surface.
		SCI.9-	Model the relationship between the height of an
Line Up with Math	NJ	12.5.2.12.D.1	object and its potential energy.

			The motion of an object can be described by its position and velocity as functions of time and by
		SCI.9-	its average speed and average acceleration
Line Up with Math	NJ	12.5.2.12.E.a	during intervals of time.
			Compare the calculated and measured speed,
			average speed, and acceleration of an object in
		SCI.9-	motion, and account for differences that may
Line Up with Math	NJ	12.5.2.12.E.1	exist between calculated and measured values.
		SCI.9-	Objects undergo different kinds of motion
Line Up with Math	NJ	12.5.2.12.E.b	(translational, rotational, and vibrational).
		SCI.9-	The motion of an object changes only when a
Line Up with Math	NJ	12.5.2.12.E.c	net force is applied.